
Determinismwith IntersectionandUnionTypes
Baber Rehman, Department of Computer Science, The University of Hong Kong

Supervisor: Dr. Bruno C. d. S. Oliveira

Motivation

Calculi with disjointness received significant research interest recently. The disjointness restricts potential problematic programs. An example is
the disjoint intersection types proposed for deterministic merge operator. A variant of disjointness is also implemented in the type-based switch
construct in Ceylon programming language. Such a type-based switch construct provides deterministic elimination of the union types. Another
variant of disjointness has recently been implemented in Scala match types. The disjointness plays an integral role in maintaining the determinism
in these calculi. We propose a novel disjointness algorithm for a calculus with intersection and union types. All of the metatheory has been
formalized in Coq theorem prover.

Background

Intersection and union types are naturally able to encode various ad-
vance programming features such as function overloading, multiple inter-
face inheritance, and nested composition. The merge operator (e1„e2)
(Reynolds, 1997; Dunfield, 2014) is an introduction form for the inter-
section types. Unrestricted merge operator is not deterministic. Oliveira
et al. (2016) study a restricted and deterministic form of the merge oper-
ator. The determinism is achieved by a notion of disjointness. We show
their typing rule next:

typ-merg
Γ ⊢ e1 : A Γ ⊢ e2 : B A ∗ B

Γ ⊢ e1„e2 : A ∧ B Oliveira et al. (2016)

Where A ∗ B indicates disjoint or non-overlapping types. For example,
Int is disjoint with Bool. This study does not account for union types.

Surprisingly, a similar problem occurs in the elimination of (untagged)
union types where multiple branches of a type-based switch construct
overlap. The Ceylon programming language (King, 2013) implements a
switch expression based on disjointness. Multiple branches of a switch
expression cannot overlap in such an implementation. The disjointness in
the presence of union types and type-based switch construct is formally
studied by Rehman et al. (2022) in a calculus called λu:

typ-switch
Γ ⊢ e : A ∨ B Γ, x : A ⊢ e1 : C

Γ, y : B ⊢ e2 : C A ∗ B
Γ ⊢ switch e {(x : A) → e1, (y : B) → e2} : C Rehman et al. (2022)

Unfortunately, their extension with disjoint polymorphism results in a dis-
jointness algorithm with ad-hoc restrictions on type variables. In partic-
ular, the type variable bounds are restricted to ground types:

Γ, α ∗ G ⊢ ...

Ground Types (G) ::= ⊤ | ⊥ | Int | A → B | G1 ∨ G2 | G1 ∧ G2 | ∀(α ∗ G).B

In summary, ground types lack type variables.

Such a restriction does not allow writing the following program, particularly Y * X
is not allowed (X and Y are type variables):

//not allowed
firstMatch [X*Int, Y*X](x:X, y:Y){}

Novel Disjointness Algorithm

We study a novel disjointness algorithm for intersection and union types.
This algorithm naturally extends for disjoint polymorphism without any
ad-hoc restrictions!

Types A,B , C ::= ⊤ | ⊥ | Int | A → B | A ∨ B | A ∧ B

A ∗a B (Disjointness with intersection and union types)

ad-btml

⊥ ∗a A

ad-intl

Int ∗a A → B

ad-orll
A1 ◁A ▷A2 A1 ∗a B A2 ∗a B

A ∗a B

ad-andll
A1 ∗a B B⊚

(A1 ∧A2) ∗a B

ad-andlss
A2 ∗a B B⊚

(A1 ∧A2) ∗a B

ad-emptyl
A ∗a B

(A ∧ B) ∗a C

Note that we do not show symmetric rules for simplicity.

B ◁A ▷ C (Union splittable types)

usp-or

A ◁A ∨ B ▷ B

usp-orandl
A1 ◁A ▷A2

A1 ∧ B ◁A ∧ B ▷A2 ∧ B

usp-orandr
B1 ◁ B ▷ B2

A ∧ B1 ◁A ∧ B ▷A ∧ B2

A⊚ (Union ordinary types)

uo-bot

⊥⊚

uo-top

⊤⊚

uo-int

Int⊚

uo-arrow

(A → B)⊚

uo-and
A⊚ B⊚

(A ∧ B)⊚

Γ ⊢ A ∗a B (Disjointness extension with polymorphism)

adp-varr
α ∗A ∈ Γ Γ ⊢ B <: A

Γ ⊢ B ∗a α

adp-varl
α ∗A ∈ Γ Γ ⊢ B <: A

Γ ⊢ α ∗a B

Our novel disjointness algorithm naturally extends for disjoint polymor-
phism and is more expressive. It accepts firstMatch function, i.e. it
allows Y * X. We have also proved type-safety and determinism for
such a calculus in Coq theorem prover. Interested readers may refer to
Rehman et al. (2022) for the details on background.

Future Work

Future work includes the integration of two independent lines of research
i.e. disjoint intersection types (Oliveira et al., 2016) and disjoint switches
(Rehman et al., 2022). Such an integration turns out to be non-trivial
and raises novel challenges in determinism.

References

Dunfield, Joshua. 2014. Elaborating intersection and union types. Journal of Functional Programming,
24(2-3), 133–165.

King, Gavin. 2013. The Ceylon language specification, version 1.0.

Oliveira, Bruno C. d. S., Shi, Zhiyuan, & Alpuim, Joao. 2016. Disjoint intersection types. Pages 364–377
of: Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming.

Rehman, Baber, Huang, Xuejing, Xie, Ningning, & Oliveira, Bruno C. d. S. 2022. Union Types with
Disjoint Switches. Pages 25:1–25:31 of: 36th European Conference on Object-Oriented Programming
(ECOOP 2022), vol. 222.

Reynolds, John C. 1997. Design of the Programming Language F orsythe. Pages 173–233 of: ALGOL-like
languages. Springer.

