
Determinism with Intersection and Union Types
Baber Rehman

The University of Hong Kong

brehman@cs.hku.hk

Bruno C. d. S. Oliveira

The University of Hong Kong

bruno@cs.hku.hk

ABSTRACT
Calculi with disjointness received significant research interest re-

cently. The disjointness restricts potential problematic programs.

An example is the disjoint intersection types proposed for determin-

istic merge operator. A variant of disjointness is also implemented

in the type-based switch construct in Ceylon programming lan-

guage. Such a type-based switch construct provides deterministic

elimination of the union types. Another variant of disjointness has

recently been implemented in Scala match types. The disjointness

plays an integral role in maintaining the determinism in these cal-

culi. We propose a novel disjointness algorithm for a calculus with

intersection and union types. Our disjointness algorithm naturally

extends for disjoint polymorphism without any ad-hoc restrictions.

Importantly, we explore the integration of merge operator and

type-based switch expression in a deterministic manner based on

disjointness and unambiguous upcasts.

1 INTRODUCTION
Intersection and union types are naturally able to encode various ad-

vance programming features. The merge operator (e1„e2) [Dunfield
2014; Reynolds 1997] is an introduction form for the intersection

types. It allows constructing terms of multiple (non-overlapping)

types. However, the unrestricted merge operator is not determinis-

tic. A program with unrestricted merge operator can evaluate to

multiple different programs. This makes the programming with

unrestricted merge operator unrealistic. Disjoint intersection types

[Oliveira et al. 2016] study a restricted and deterministic form of

the merge operator. The determinism is achieved with the assis-

tance of a notion of disjointness which allows certain merges and

restricts certain merges. In particular, a merge of 1„true is allowed

because the type of 1 is disjoint with the type of true i.e. Int is disjoint

with Bool. Whereas, a merge of 1„2 is not allowed because Int is not

disjoint with Int.

Surprisingly, a similar problem occurs in the elimination of (un-

tagged) union types where multiple branches of a type-based switch

construct overlap. The Ceylon programming language [King 2013]

implements a switch expression based on disjointness. Multiple

branches of a switch expression cannot overlap in such an imple-

mentation. The disjointness in the presence of union types and

type-based switch construct is formally studied by Rehman et al.

[2022] in a calculus called _𝑢 . The calculus _𝑢 is further enriched

with the intersection types, subtyping distributivity, and disjoint

polymorphism [Alpuim et al. 2017]. Unfortunately, their extension

with disjoint polymorphism results in a disjointness algorithm with

ad-hoc restrictions on type variables. For example, the following

program is not allowed in their calculus:

firstMatch [X*Int, Y*X] (x:X, y:Y){}

Due to the ad-hoc ground type restriction on type variables, X * Y

is rejected by Rehman et al. [2022]. We propose a novel disjointness

algorithm for intersection and union types which naturally extends

for disjoint polymorphismwithout ad-hoc restrictions. In particular,

our disjointness algorithm accepts firstMatch function. Additionally,

we outline a research plan for the deterministic composition of

intersection types, merge operator, union types, and a type-based

switch construct. This study combines two independent lines of

research i.e. disjoint intersection types [Oliveira et al. 2016] and

disjoint switches [Rehman et al. 2022]. Such an integration turns

out to be non-trivial and raises novel challenges in determinism.

2 BACKGROUND
Intersection types. Coppo et al. [1981] and Pottinger [1980] ini-

tially studied intersection types in programming languages to as-

sign meaningful types to terms. Compagnoni and Pierce [1996]

studied multiple interface inheritance by exploiting intersection

types. Pierce [1991] studied a calculus with intersection types, union

types and polymorphism. Intersection types have also been studied

in the context of refinement types [Freeman and Pfenning 1991].

Refinement types increase the expressiveness of types. They pose

a syntactic restriction on intersection types where the intersection

of two types is only allowed if two types are refinements of one

another. None of these works study merge operator.

Merge operator. The merge operator was first introduced in

Forsythe programming language by Reynolds [1997]. Dunfield

[2014] studied merge operator in a calculus with union types. Dun-

field followed an elaboration semantics where merges elaborate

to pairs. However, the source semantics of Dunfield’s calculus is

non-deterministic.

Disjoint intersection types. Oliveira et al. [2016] studied disjoint

intersection types to overcome the non-deterministic behaviour of

the merge operator. They proposed a disjointness constraint in the

formation of the merge operator. A merge of two expressions is al-

lowed only if their types are disjoint. In summary, non-overlapping

types are disjoint types. For example, a merge of 1„true is allowed
but a merge of 1„2 is not allowed in the presence of such a disjoint-

ness constraint. The calculi studied by Dunfield [2014] and Oliveira

et al. [2016] adopt an elaboration semantics. Recently, Huang and

Oliveira [2020] proposed a direct operational semantics for the

merge operator. However, this line of work does not count for

union types and a type-based switch construct.

Union types. Union types were introduced in programming

languages by MacQueen et al. [1984]. They proposed an implicit

elimination rule for union types. Barbanera et al. [1995] solved the

type preservation problem of implicit union elimination rule by

parallel reduction. Single-branch case construct for union types

is proposed by Pierce [1991]. Rioux et al. [2023] studied merge

operator together with intersection and union types. However,

their merge operator is restricted to functions. Recently, Rehman

et al. [2022] studied disjoint switches as a deterministic elimination

form for union types. The order of branches of a switch construct

Trovato and Tobin, et al.

Type A, B, C F ⊤ | ⊥ | Int | A → B | A ∨ B | A ∧ B

A ∗𝑎 B (Disjointness with intersection and union types)
ad-btml

⊥ ∗𝑎 A

ad-btmr

A ∗𝑎 ⊥

ad-intl

Int ∗𝑎 A → B

ad-intr

A → B ∗𝑎 Int

ad-orll

A1 ⊳ A ⊲ A2 A1 ∗𝑎 B A2 ∗𝑎 B

A ∗𝑎 B

ad-andlss

A2 ∗𝑎 B B⊚

(A1 ∧ A2) ∗𝑎 B

ad-orrr

B1 ⊳ B ⊲ B2 A ∗𝑎 B1 A ∗𝑎 B2
A ∗𝑎 B

ad-andll

A1 ∗𝑎 B B⊚

(A1 ∧ A2) ∗𝑎 B

ad-andrr

A ∗𝑎 B1 A⊚

A ∗𝑎 (B1 ∧ B2)

ad-andrss

A ∗𝑎 B2 A⊚

A ∗𝑎 (B1 ∧ B2)

ad-emptyl

A ∗𝑎 B

(A ∧ B) ∗𝑎 C

ad-emptyr

B ∗𝑎 C

A ∗𝑎 (B ∧ C)

Figure 1: Disjointness based on splittable types.

does not matter in their calculus due to the disjointness constraint.

However, their disjointness algorithm poses an ad-hoc restriction

on type variable bounds when studied with disjoint polymorphism.

Also, their study does not count for the merge operator.

3 APPROACH
The novel disjointness algorithm for intersection and union types

is shown in Figure 1. The algorithm is based on union ordinary

and union splittable types [Huang and Oliveira 2021]. We skip

the definition of union ordinary and union splittable types due

to space constraints. Interested readers may refer to Huang and

Oliveira [2021] for more details. In summary, any type having a

union operator either at top-level or nested is called union splittable

type. For example, Int ∨ Bool is a union splittable type (Int ⊳ Int ∨
Bool ⊲ Bool). On the contrary, a type is union ordinary (A⊚) if it is
not union splittable.

Interesting disjointness rules. The rules ad-orll and ad-orrr are
of significant interest. These rules state that a union splittable type

A2 ⊳A⊲A1 is disjoint to another type B if A1 and A2 are disjoint to B.
Union splittable types play an integral role in the completeness of

disjointness algorithm. The algorithm will not be complete without

union splittable types. We also prove the soundness and complete-

ness of our disjointness algorithm with respect to the disjointness

specifications proposed by Rehman et al. [2022]. Unlike _𝑢 [Rehman

et al. 2022], our novel disjointness algorithm naturally extends for

disjoint polymorphism. In particular, the extension with disjoint

polymorphism does not require a so called ground type restriction

on type variable bounds. The extended rules with disjoint polymor-

phism are shown in Figure 2. These rules trivially state that a type

variable is disjoint to all the subtypes of its bound.

Γ ⊢ A ∗𝑎 B (Disjointness extension with polymorphism)
adp-varr

𝛼 ∗ A ∈ Γ Γ ⊢ B <: A

Γ ⊢ B ∗𝑎 𝛼

adp-varl

𝛼 ∗ A ∈ Γ Γ ⊢ B <: A

Γ ⊢ 𝛼 ∗𝑎 B

Figure 2: Disjointness with polymorphism.

Continuous investigation. The ongoing study further investigates
the design of a deterministic calculus by integrating disjoint inter-

section types and disjoint switches (_𝑢). So far none of the calculi

study disjoint intersection types and disjoint switches together.

Putting together merge operator and the disjoint switches results

in novel challenges for determinism. In particular, multiple upcast

paths from certain intersection types to union types contribute

towards non-determinism. For example, a value of type Int ∧ Bool

such as 1„true follows two paths to upcast to Int ∨ Bool. It results in

1 via Int and true via Bool. We plan to investigate non-determinism

further as a part of ongoing work.

Restricting ambiguous upcasts. A possible solution under inves-

tigation is to restrict the ambiguous upcasts in subsumption rule.

This adds an extra premise in subsumption rule, which restricts

certain upcasts. Such a premise restricts the upcast of 1„true from

Int ∧ Bool to Int ∨ Bool. Whereas, it allows upcasting from Int ∧ Bool to

Int or Int ∨ String. The updated subsumption rule is (where A <𝑢 B is

the unambiguous relation):

e : A A <: B A <𝑢 B

Γ ⊢ e : B
t-sub

4 CONTRIBUTIONS
The integration of intersection and union types is known to be non-

trivial. Oliveira et al. [2016] study disjointness for intersection types

and the merge operator. Rehman et al. [2022] study a dual notion of

disjointness for union types and the type-based switch expression.

They also extend the disjointness algorithm with intersection types

(without merge operator). The disjointness algorithm for intersec-

tion and union types proposed by Rehman et al. [2022] depends

on Least Ordinary Subtypes (LOS). Unfortunately, such an algo-

rithm fails to naturally scale for disjoint polymorphism and results

in ad-hoc restrictions. We propose a novel disjointness algorithm

that naturally scales for disjoint polymorphism. Importantly, our

ongoing study investigates the design of a deterministic calculus

with all the aforementioned features.

In summary the contributions of this work are:

• A novel disjointness algorithm for intersection and union

types

• An extension of disjointness algorithm with disjoint poly-

morphism

• Mechanical formalization in Coq theorem prover

• Ongoingwork contributes to the the development of a novel

calculus with intersection types, merge operator, union

types, and a type-based switch expression. Determinism is

an important challenge in this line of work

Determinism with Intersection and Union Types

REFERENCES
João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism.

In European Symposium on Programming (ESOP).
Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. 1995. Intersec-

tion and union types: syntax and semantics. Information and Computation 119, 2

(1995), 202–230.

Adriana B Compagnoni and Benjamin C Pierce. 1996. Higher-order intersection types

and multiple inheritance. Mathematical Structures in Computer Science 6, 5 (1996),
469–501.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional

characters of solvable terms. Mathematical Logic Quarterly 27, 2-6 (1981), 45–58.

Joshua Dunfield. 2014. Elaborating intersection and union types. Journal of Functional
Programming 24, 2-3 (2014), 133–165.

Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. In Proceedings of the
ACM SIGPLAN 1991 conference on Programming language design and implementation.
268–277.

Xuejing Huang and Bruno C. d. S. Oliveira. 2020. A Type-Directed Operational

Semantics For a Calculus with a Merge Operator. In 34th European Conference on
Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 26:1–26:32. https:

//doi.org/10.4230/LIPIcs.ECOOP.2020.26

Xuejing Huang and Bruno C d S Oliveira. 2021. Distributing intersection and union

types with splits and duality (functional pearl). Proceedings of the ACM on Program-
ming Languages 5, ICFP (2021), 1–24.

Gavin King. 2013. The Ceylon language specification, version 1.0.

David MacQueen, Gordon Plotkin, and Ravi Sethi. 1984. An ideal model for recursive

polymorphic types. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. 165–174.

Bruno C. d. S. Oliveira, Zhiyuan Shi, and Joao Alpuim. 2016. Disjoint intersection types.

In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming. 364–377.

Benjamin C Pierce. 1991. Programming with intersection types, union types. Technical
Report. and polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon

University.

Garrel Pottinger. 1980. A type assignment for the strongly normalizable _-terms. To HB
Curry: essays on combinatory logic, lambda calculus and formalism (1980), 561–577.

Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union

Types with Disjoint Switches. In 36th European Conference on Object-Oriented
Programming (ECOOP 2022) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 25:1–25:31. https://doi.org/10.4230/LIPIcs.ECOOP.

2022.25

John C Reynolds. 1997. Design of the Programming Language F orsythe. In ALGOL-like
languages. Springer, 173–233.

Nick Rioux, Xuejing Huang, Bruno C d S Oliveira, and Steve Zdancewic. 2023. A

Bowtie for a Beast: Overloading, Eta Expansion, and Extensible Data Types in F.

Proceedings of the ACM on Programming Languages 7, POPL (2023), 515–543.

https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Contributions
	References

