
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, 13 pages, 2022. © Cambridge University Press 2022 1
doi:10.1017/xxxxx

T H E O R E T I C A L P E A R L

Type Soundness with Unrestricted Merges

BABER REHMAN BRUNO C. D. S. OLIVEIRA
The University of Hong Kong

(e-mail: {brehman, bruno}@cs.hku.hk)

Abstract

Dunfield (2014) presented a calculus with union and intersection types in the presence of an unre-
stricted term-level merge operator. However, the semantics of calculi with an unrestricted merge
operator is challenging and creates difficulties for proving type-safety. In this paper we study a vari-
ant of Dunfield’s calculus with a direct and type sound operational semantics, providing a lightweight
framework to study the semantics of calculi with an unrestricted merge operator.

1 Introduction

The merge operator has been studied by various researchers in the literature (Reynolds,
1988; Castagna et al., 1995; Dunfield, 2014; Oliveira et al., 2016; Huang et al., 2021). The
main reason of interest for the merge operator is its ability to encode several other language
constructs. As Dunfield argued:

Designing and implementing typed programming languages is hard. Every new type system fea-
ture requires extending the metatheory and implementation, which are often complicated and fragile.
To ease this process, we would like to provide general mechanisms that subsume many different
features.

With its ability to encode several other language features, the merge operator provides
one such general mechanism. Instead of having to develop calculi to study each individual
feature (and interactions with other features), we only need to show encodings of lan-
guage features in terms of the merge operator. Thus, for many features, no new calculus
is needed. The merge operator, together with intersection and union types, is naturally
able to encode various advanced programming features such as nested composition (Bi
et al., 2018), multi-field records from single-field records (Reynolds, 1988), and function
overloading (Castagna et al., 1995) among others. The research programming language
CP (Zhang et al., 2021) is an example of a language design that leverages on the merge
operator to model complex source-level programming language features. CP enables a
high-degree of modularity and reuse, while being built on top of a small core language.

Dunfield (2014) studied a calculus with intersection types, union types, and the merge
operator. She defined a direct operational semantics, and has shown that this semantics is



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2 Type Soundness with Unrestricted Merges

neither type-sound nor deterministic. Nevertheless, the semantics is still useful to under-
stand the behaviour of the merge operator. She then adopted an elaboration semantics into
an ordinary λ -calculus with product and sum types. The main idea is to elaborate inter-
section types to product types, union types to sum types, and merges to pairs. Dunfield
proved that the elaboration is type-preserving, thus enabling a proof of type-safety for a
calculus with an unrestricted merge operator. Central to Dunfield’s result is the fact that
the elaboration is type-directed, thus being able to access and use typing information.

More recently, Huang et al. (2021) proposed a variant of operational semantics called
Type-Directed Operational Semantics (TDOS). TDOS can directly model the semantics of
languages with a merge operator, and enables both type-soundness and determinism. In a
TDOS type annotations are needed to guide reduction, and reduction is type-dependent,
which is key to prove type-soundness. However, Huang et al.’s work considered only a
restricted version of the merge operator, and did not account for union types. The restric-
tions imposed by Huang et al. complicate the semantics and the metatheory, to enable
determinism. Furthermore, they also preclude some applications, such as overloading.
Thus it is not clear yet that this set of restrictions is the most adequate for calculi with
the merge operator. Since the key argument for the merge operator is its general purpose
nature and ability to encode other features, restrictions should be minimal to avoid pre-
cluding applications (Dunfield, 2014). Thus the study of calculi with unrestricted merges
remains relevant, as such calculi remain open to other (potentially better) restrictions.

In this pearl we propose a direct and type-sound operational semantics for a variant of
Dunfield’s calculus. We employ a TDOS, but without imposing any restrictions on the
merge operator. As such the calculus is also not deterministic, but it retains the general
purpose nature of Dunfield’s original calculus. Moreover, the calculus is considerably sim-
plified compared to Huang et al.’s approach, because many artifacts used in their semantics
for obtaining determinism are not needed. Thus, while our work does not present novel
techniques, it provides a clean and simple framework to study the semantics of calculi with
an unrestricted merge operator. Unlike Dunfield’s work, our calculus can be understood
independently from a target calculus and elaboration, while still achieving a type-safety
proof. All the metatheory of this paper has been formalized in Coq theorem prover and is
available at: https://github.com/baberrehman/jfp23-artifact.

2 Background: Dunfield’s Calculus

We start by reviewing a variant of Dunfield (2014)’s calculus and its direct opera-
tional semantics, and illustrate how it lacks type preservation. We employ some minor
modifications to Dunfield’s calculus that we document and justify along the way.

Syntax and subtyping. The syntax for Dunfield’s calculus is shown in Figure 1. Types
consist of the top type ⊤, bottom type ⊥, integers (Int), function types (A → B), and
intersection (A ∧ B) and union (A ∨ B) types. Note that the type ⊥ has not been studied
in Dunfield’s original calculus. Expressions consist of variables (x), integer literals (i),
abstractions (λx. e), applications (e1 e2), the merge operator (e1,,e2) and a fixpoint oper-
ator (fix x.e). We also add an explicit switch expression for union elimination. Similarly,

https://github.com/baberrehman/jfp23-artifact


93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Journal of Functional Programming 3

Type A, B, C ::= ⊤ |⊥ | Int | A → B | A ∨ B | A ∧ B
Expr e ::= x | i | λx. e | e1 e2 | e1,,e2 | fix x.e | switch e {x → e1, y → e2}
Value v ::= x | i | λx. e | v1,,v2
Context Γ ::= · | Γ, x : A

A <: B (Subtyping)

S-TOP

A <: ⊤

S-INT

Int<: Int

S-ARROW
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-BOT

⊥<: A

S-ORA
A <: C B <: C

A ∨ B <: C

S-ORB
A <: B

A <: B ∨ C

S-ORC
A <: C

A <: B ∨ C

S-ANDA
A <: B A <: C

A <: B ∧ C

S-ANDB
A <: C

A ∧ B <: C

S-ANDC
B <: C

A ∧ B <: C

Fig. 1. Source syntax of Dunfield’s calculus (with a switch expression), and subtyping.

variables, literals, abstractions and a merge of values constitute values. The typing context
is standard. Note that we do not adopt a notion of evaluation contexts for union elimina-
tion as in Dunfield’s original formalization. Instead, we use an explicit switch expression
(switch e {x → e1, y → e2}). We choose using a switch expression because it simplifies
parts of the metatheory, while the calculus retains at least the same expressive power. The
subtyping relation is standard for a calculus with intersection and union types.

Type System. Figure 2 shows the type system. The reader can ignore the gray parts in
the rules, which are discussed in Section 4. Rules DTYP-INT, DTYP-VAR, DTYP-APP,
and DTYP-ABS are standard rules for integers, variables, applications, and abstractions.
Similarly, rule DTYP-SUB is the standard subsumption rule. Rules DTYP-MERGA and
DTYP-MERGB type-check the merge operator. They express the idea that a merge can have
the type of either one of its components. An important point to note about these rules is that
they do not impose any type restriction in the other component. For instance, in rule DTYP-
MERGA, e2 is completely unrestricted (it could be ill-typed, for instance). Rule DTYP-AND

is the standard introduction rule for intersection types (Coppo et al., 1981).
Rules DTYP-ANDL and DTYP-ANDR are for intersection elimination, and rules DTYP-

ORL and DTYP-ORR are for union introduction. Note that those rules can be subsumed by
the subsumption rule. Rule DTYP-FIX type-checks fixpoints. Interested readers may refer to
the original paper (Dunfield, 2014) for more details. Finally, the rule DTYP-SWITCH is for
union elimination. Dunfield’s original formalization uses a notion of evaluation context for
union elimination. We avoid such form of union elimination because it complicates proofs
of inversion lemmas. However, we prove that the type system presented in Figure 2 is
complete with respect to Dunfield’s original type system. We also prove that the dynamic
semantics shown in Figure 3 is complete with respect to Dunfield’s original semantics.
Both lemmas are straightforward and part of the Coq formalization of this paper.

Operational Semantics. Figure 3 shows the small-step operational semantics.
Rules DSTEP-APPL, DSTEP-APPR, DSTEP-BETA, and DSTEP-FIX are standard reduction
rules for applications, beta-reduction, and fixpoints. The remaining rules are for the



139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4 Type Soundness with Unrestricted Merges

Γ ⊢d e : A⇝ e′ (Dunfield’s type system with elaboration to λm)

DTYP-INT

Γ ⊢d i : Int⇝ i

DTYP-SUB

Γ ⊢d e : A⇝ e′ A <: B

Γ ⊢d e : B⇝ e′

DTYP-VAR
x : A ∈ Γ

Γ ⊢d x : A⇝ x

DTYP-APP

Γ ⊢d e1 : A → B⇝ e′1 Γ ⊢d e2 : A⇝ e′2

Γ ⊢d e1 e2 : B⇝ e′1 e′2

DTYP-ABS

Γ, x : A ⊢d e : B⇝ e′

Γ ⊢d λx.e : A → B⇝ λx.e′ : A → B

DTYP-MERGA

Γ ⊢d e1 : A⇝ e′1

Γ ⊢d e1,,e2 : A⇝ e′1

DTYP-MERGB

Γ ⊢d e2 : B⇝ e′2

Γ ⊢d e1,,e2 : B⇝ e′2

DTYP-AND
Γ ⊢d e : A⇝ e1 Γ ⊢d e : B⇝ e2

Γ ⊢d e : A ∧ B⇝ e1,,e2

DTYP-ANDL

Γ ⊢d e : A ∧ B⇝ e′

Γ ⊢d e : A⇝ e′

DTYP-ANDR

Γ ⊢d e : A ∧ B⇝ e′

Γ ⊢d e : B⇝ e′

DTYP-ORL

Γ ⊢d e : A⇝ e′

Γ ⊢d e : A ∨ B⇝ e′

DTYP-ORR

Γ ⊢d e : B⇝ e′

Γ ⊢d e : A ∨ B⇝ e′

DTYP-FIX

Γ ⊢d e : A⇝ e′

Γ ⊢d fix x.e : A⇝ fix x.e′ : A

DTYP-SWITCH

Γ ⊢d e : A ∨ B⇝ e′

Γ, x : A ⊢d e1 : C⇝ e′1 Γ, y : B ⊢d e2 : C⇝ e′2

Γ ⊢d switch e {x → e1, y → e2} : C⇝ switch e′ {(x : A)→ e′1, (y : B)→ e′2}

Fig. 2. Source syntax and source typing of Dunfield’s calculus.

merge operator and deserve more explanation. Rules DSTEP-UNMERGL and DSTEP-
UNMERGR select a component from the merge operator. Rules DSTEP-MERGL and
DSTEP-MERGR reduce the merge operator if either the left or the right component reduces.
Rule DSTEP-SPLIT constructs a merge of an expression. Finally, rules DSTEP-SWITCHL,
DSTEP-SWITCHR, and DSTEP-SWITCH are reduction rules for switch expressions, and are
not included in Dunfield’s original semantics.

Absence of type-preservation. Dunfield notes that her small-step semantics is not type
preserving nor deterministic. We illustrate the lack of type-preservation with a simple
example. If we pass a merge such as 1,,true to the successor function (succ) on integers, it
may generate ill-typed terms during reduction. For example, a ill-typed derivation is:

DSTEP-APPR

DSTEP-UNMERGR
1,,true−→d true

succ (1,,true)−→d succ true



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

Journal of Functional Programming 5

e −→d e′ (Dunfield’s semantics)

DSTEP-APPL
e1 −→d e′1

e1 e2 −→d e′1 e2

DSTEP-APPR
e −→d e′

v e −→d v e′

DSTEP-BETA

(λx.e) v −→d e[x⇝ v]

DSTEP-FIX

fix x.e −→d e[x⇝ fix x.e]

DSTEP-UNMERGL

e1,,e2 −→d e1

DSTEP-UNMERGR

e1,,e2 −→d e2

DSTEP-MERGL
e1 −→d e′1

e1,,e2 −→d e′1,,e2

DSTEP-MERGR
e2 −→d e′2

e1,,e2 −→d e1,,e′2

DSTEP-SPLIT

e −→d e,,e

DSTEP-SWITCH
e −→d e′

switch e {x → e1, y → e2} −→d switch e′ {x → e1, y → e2}

DSTEP-SWITCHL

switch v {x → e1, y → e2} −→d e1[x⇝ v]

DSTEP-SWITCHR

switch v {x → e1, y → e2} −→d e2[y⇝ v]

Fig. 3. Dynamic semantics of Dunfield’s calculus.

The expression succ true is clearly not well-typed, illustrating the lack of type preserva-
tion. Note that the reason why this derivation is allowed is because when reducing a merge
there are multiple (non-deterministic) choices. It is possible to select 1 using rule DSTEP-
UNMERGL, which would lead to a type-preserving derivation. But it is also possible to
select true using rule DSTEP-UNMERGR, leading to the ill-typed derivation above.

In Dunfield’s work the small-step semantics is used to justify the elaboration seman-
tics, which is the main result in her work. She shows that her calculus is type-safe via a
type-preserving translation into an ordinary λ -calculus with pairs and product types. One
of her results is that executions of elaborated programs correspond to (type-preserving)
executions in her small-step semantics. Unfortunately, her small-step semantics does allow
other executions that are not type-preserving and, consequently, conventional results such
as type-soundness cannot be established.

3 A Type-Sound Calculus with a Type-Directed Operational Semantics

In this section we present a variant of Dunfield’s calculus called λm. The small-step seman-
tics of λm is type-sound. To achieve type-soundness we adopt a TDOS (Huang et al., 2021).
Unlike Huang et al.’s work, we use a standard type-assignment type system instead of
bidirectional type-checking, do not impose a disjointness restriction, and include union
types. With a TDOS, reduction can use type information available from type annotations
to choose how to reduce merges, avoiding ill-typed derivations during reduction.

3.1 Syntax and Type System

Syntax. Figure 4 shows the syntax and typing for λm. Most syntax simply follows
Dunfield’s original syntax, and differences are highlighted in gray color. Lambda expres-
sions are annotated with input and output types i.e. λx. e : A → B. The fixpoint operator
(fix x.e : A) is also annotated, and the switch expression carries types for branch selection.



231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6 Type Soundness with Unrestricted Merges

Type A, B, C ::= ⊤ |⊥ | Int | A → B | A ∨ B | A ∧ B
Expr e ::= x | i | λx. e : A → B | e1 e2 | e1,,e2 | fix x.e : A |

switch e {(x : A)→ e1, (y : B)→ e2}
Value v ::= i | λx. e : A → B | v1,,v2
Context Γ ::= · | Γ, x : A

Γ ⊢ e : A (Typing for λm)

T-VAR
x : A ∈ Γ

Γ ⊢ x : A

T-INT

Γ ⊢ i : Int

T-SUB
Γ ⊢ e : A A <: B

Γ ⊢ e : B

T-APP
Γ ⊢ e1 : A → B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

T-ABS
Γ, x : A ⊢ e : B

Γ ⊢ (λx.e : A → B) : A → B

T-MERG
Γ ⊢ e1 : A Γ ⊢ e2 : B

Γ ⊢ e1,,e2 : A ∧ B

T-FIX
Γ ⊢ e : A

Γ ⊢ (fix x.e : A) : A

T-SWITCH
Γ ⊢ e : A ∨ B Γ, x : A ⊢ e1 : C Γ, y : B ⊢ e2 : C

Γ ⊢ switch e {(x : A)→ e1, (y : B)→ e2} : C

Fig. 4. Syntax and type system for λm.

Type System. The rules T-VAR, T-INT, T-SUB, and T-APP are same as in Dunfield’s calcu-
lus. The notable differences are in rules T-ABS, T-MERG, and T-FIX. Rule T-ABS works with
type annotated lambda expressions. Rule TYP-FIX is a standard typing rule for the fixpoint
operator, but is annotated with the type of the expression. Another difference to Dunfield’s
type system lies in the treatment of typing for merges. Contrary to Dunfield’s merge rules,
the rule T-MERG does not allow ill-typed expressions inside a merge. In Section 4, we
discuss this difference further, and also show that our rules do not limit expressiveness.

3.2 Casting

Casting lies at the core of calculi with a TDOS for the merge operator (Huang et al., 2021).
Generally speaking, casting makes a value consistent with the type under which that value
is cast. For example, when an expression 1,,true is cast under type Int it gives 1:

1,,true−→Int 1 (applying rule CST-MERGL)

Conversely, the same expression would result in true if cast under type Bool. In sum-
mary, casting enables extracting the value of a specific type from the merge operator. In
Dunfield’s calculus there is no casting relation because her semantics is untyped and there
is no type information available during reduction.

Casting relation. The casting relation is shown in Figure 5. The relation v −→A v′ shows
casting of a value v under type A to another value v′. Note that casting is only applicable to
values. We explain the rules next.

When casting a value under ⊤ type it results in same value as stated in rule CST-TOP.
Casting an integer under Int returns the same integer. Casting rules for union types are



277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

Journal of Functional Programming 7

Ord A (Ordinary Types)

ORD-INT

Ord Int

ORD-ARROW

Ord A → B

v −→A v′ (Type Casting)

CST-TOP

v −→⊤ v

CST-INT

i −→Int i

CST-ORL
v −→A v′

v −→A∨B v′

CST-ORR
v −→B v′

v −→A∨B v′

CST-MERG
v −→A v1 v −→B v2

v −→A∧B v1,,v2

CST-ARROW
A1 → B1 <: A2 → B2

λx.e : A1 → B1 −→A2→B2 λx.e : A1 → B1

CST-MERGL
Ord A v1 −→A v′1

v1,,v2 −→A v′1

CST-MERGR
Ord A v2 −→A v′2

v1,,v2 −→A v′2

Fig. 5. Type casting for λm.

interesting. If an expression casts under a part of a union type then that expression casts
under the whole union type as stated in rules CST-ORL and CST-ORR. Casting a lambda
expression under a function type returns the same lambda expression as stated in rule CST-
ARROW. A merge casts under an ordinary type if either component of the merge casts
under that ordinary type (rules CST-MERGL and CST-MERGL). Casting a value under an
intersection type results in a merge (rule CST-MERG). Type casting has type preservation
and progress properties:

Theorem 1 (Casting Preservation). If · ⊢ v : A and v −→A v′ then Γ ⊢ v′ : A.
Theorem 2 (Casting Progress). If · ⊢ v : A then v −→A v′.

Theorems 1 and 2 are vital in proving the type-soundness of the calculus. Notice that
the casting relation is non-deterministic, which results in non-deterministic semantics. For
illustration purposes, consider what will be the result of casting 1,,true under the type
Int∨Bool. It can either result in 1 or true depending on the casting rule that we apply:

1,,true−→Int∨Bool 1 (applying rule CST-ORL)
1,,true−→Int∨Bool true (applying rule CST-ORR)

Despite its non-determinism, the use of casting in our small-step semantics makes the
semantics “more” deterministic than in Dunfield’s calculus. Unlike Dunfield’s semantics,
only well-typed casts and reductions are allowed.

3.3 Operational semantics

The operational semantics for λm is shown in Figure 6. Rules STEP-APPL and STEP-APPR

are standard reduction rules. Rule STEP-BETA is the beta reduction rule. This rule first
casts the argument under the input type and then substitutes the argument in the body of
the lambda expression. Casting drops the unnecessary part from the argument and makes
the input value consistent with the input type of the applied function. For example:



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8 Type Soundness with Unrestricted Merges

e −→ e′ (Small-step operational semantics)

STEP-APPL
e1 −→ e′1

e1 e2 −→ e′1 e2

STEP-APPR
e −→ e′

v e −→ v e′

STEP-DISPATCH
(v1,,v2)▷ v −→ e′

(v1,,v2) v −→ e′

STEP-MERGL
e1 −→ e′1

e1,,e2 −→ e′1,,e2

STEP-SWITCHL
v −→A v′

switch v {(x : A)→ e1, (y : B)→ e2} −→ e1[x⇝ v′]

STEP-BETA
v −→A v′

(λx.e : A → B) v −→ e[x⇝ v′]

STEP-SWITCHR
v −→B v′

switch v {(x : A)→ e1, (y : B)→ e2} −→ e2[y⇝ v′]

STEP-FIX

fix x.e : A −→ e[x⇝ fix x.e : A]

STEP-SWITCH
e −→ e′

switch e {(x : A)→ e1, (y : B)→ e2} −→ switch e′ {(x : A)→ e1, (y : B)→ e2}

STEP-MERGR
e −→ e′

v,,e −→ v,,e′

Fig. 6. Operational semantics for λm.

(λx. true,,x : Int→Bool) (1,,false)

A merge of 1,,false is the input being passed to the lambda expression annotated with an
input type of Int. Since the dynamic type of 1,,false is Int∧Bool, which is a subtype of Int,
the above application type-checks. However, before passing 1,,false to the lambda body,
we cast it under the input type (Int) to make the input value and the input type consistent.
Rules STEP-MERGL and STEP-MERGR reduce the left and right part of the merge operator.
The rules STEP-SWITCHL and STEP-SWITCHR are interesting. Casting is essential in those
rules to ensure that the correct branch is selected. Finally, rule STEP-FIX is a standard
reduction rule for fixpoints. It replaces x in the body of the fixpoint in itself. The rule STEP-
DISPATCH requires detailed explanation and is discussed next.

3.4 Applicative Dispatching

Sometimes lambda expressions appear inside a merge. This enables a merge to be used
as a function in applications. Therefore, lambda expressions need to be extracted from
the merge and then applied to arguments. The rule STEP-DISPATCH deals with such cases
by employing another relation called applicative dispatch (we use the same terminology
as Xue et al. (2022)). The applicative dispatching relation is shown in the upper part of
Figure 7. Applicative dispatch selects the appropriate function for application from the
merge depending upon the argument type. Moreover, it enables function overloading.

Applicative dispatch relation. Rules ADP-MLEFT and ADP-MRIGHT apply either the left
or right part of a merge to the argument. There are two premises. One premise states that
the dynamic type of argument is a subtype of the input type of one part of merge. While the
other premise states that the dynamic type of the argument is not a subtype of the input type
of the other part of the merge. The input type relation returns the input type of a functional



369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Journal of Functional Programming 9

(v1,,v2)▷ v −→ e′ (Applicative dispatch)

APD-MLEFT

⌊v⌋<: ⌊v1⌋λ ¬(⌊v⌋<: ⌊v2⌋λ )

(v1,,v2)▷ v −→ v1 v

APD-MRIGHT

¬(⌊v⌋<: ⌊v1⌋λ ) ⌊v⌋<: ⌊v2⌋λ

(v1,,v2)▷ v −→ v2 v

APD-BOTH

⌊v⌋<: ⌊v1⌋λ ⌊v⌋<: ⌊v2⌋λ

(v1,,v2)▷ v −→ v1 v,,v2 v

Dynamic Type ⌊v⌋
⌊i⌋ = Int

⌊λx.e : A → B⌋ = A → B

⌊v1,,v2⌋ = ⌊v1⌋ ∧ ⌊v2⌋

Input Type ⌊v⌋λ

⌊λx.e : A → B⌋λ = A

⌊v1,,v2⌋λ = ⌊v1⌋λ ∨ ⌊v2⌋λ

⌊i⌋λ = ⊥
Fig. 7. Dynamic dispatch, dynamic type and input type relation for λm.

value. The functional value is either a lambda expression, or a merge containing at least one
lambda expression. The first case of the input type function deals with lambda expressions.
In this case the input type simply returns the input type of the given lambda expression.
The second case deals with functional merges. In this case the output is the union of the
input types of all the lambda expressions in the merge. The other values cannot appear on
the left side of a valid application. Therefore, they cannot have an input type. We simply
return ⊥ in such cases. To illustrate the rules, consider the following application:

((λx.succ x : Int→ Int),,(λx.not x : Bool→Bool),,true) 1

The above application is valid and type-checks. We need to extract λx.succ x : Int→ Int

from this merge and then apply it to argument 1. Note that it is essential to choose
λx.succ x : Int→ Int in this case. The calculus will not be type preserving otherwise. This
is due to the fact that (true 1) is not a valid application and neither is (λx.not x : Bool→
Bool) 1). Therefore, special care needs to be taken to choose the appropriate function for
applications. Applicative dispatch compares the argument type with the input type of each
expression in the merge. It then applies all of the possible matching functions. The partial
derivation for (λx.succ : Int→ Int,,λx.not x : Bool→Bool,,true) 1 is shown below:

STEP-DISPATCH

APD-MLEFT
Int<: Int∨Bool ¬(Int<: ⊥)

(λx.succ x,,λx.not x,,true)▷ 1 −→ ((λx.succ x),,(λx.not x)) 1

(λx.succ x,,λx.not x,,true) 1 −→ ((λx.succ x),,(λx.not x)) 1

We omit type annotations in the derivation for space reasons. The expression
((λx.succ x),,(λx.not x)) 1 further reduces to (λx.succ x) 1. It is evident that the only func-
tion that can be applied to 1 is the first one. Finally (λx.succ x) 1 becomes a standard
application with a lambda expression and reduces using beta reduction.

Rule ADP-BOTH is interesting. It applies both parts of the merge to the argument and
returns a merge of the outputs of both functions. This rule is applicable in cases where the



415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10 Type Soundness with Unrestricted Merges

dynamic type of the argument is a subtype of both parts of the merge. Both the succ and
pred functions are applicable to 1 in the following application, resulting in 2,,0.

((succ : Int→ Int),,(pred : Int→ Int)) 1

Applicative dispatching and partial applications. In the previous example, it seems
that a simpler alternative design choice for applicative dispatching is sufficient. An idea
is to simply have rules APD-MLEFT and APD-MRIGHT, while dropping the non subtyp-
ing premises and rule APD-BOTH. However, such design, where we non-deterministically
select an applicable function, does not work. The issue of such design is visible with partial
applications of overloaded functions. Consider the following application:

(λx. λy. succ y : Int→ Int→ Int,,λx. λy. not y : Int→Bool→Bool) 1 true

Note that the merge consists of two functions in the example above. Importantly, the input
type of both of the functions is Int. The first argument in the application is 1 with (dynamic)
type Int. With non-deterministic selection of a function, we could end up in a stuck expres-
sion later on. For instance if we selected the first function above, then we would get stuck
when applying the resulting function (λy. succ y : Int→ Int) to true (since the argument is
of the wrong type). With our design, both functions are selected in the first application to
1 using rule APD-BOTH. Then, on the second application, we select the second function in
the merge. Thus the rule APD-BOTH avoids getting into a stuck (and ill-typed) state during
reduction, by not committing too early to selecting a function.

Metatheory. Lemma 3 states that if the dynamic type of value v1 is a subtype of the input
type of v (i.e. ⌊v1⌋<: ⌊v⌋λ ) then v must contain a function and the value v1 is (type) com-
patible with that function. That is the type of v checks against a function type where the
dynamic type of v1 is the input type of the function. Lemma 3 is essential for the type
preservation of λm. Similarly, Lemma 4 is essential for progress. It states that a well-typed
application of the merge operator must take a step.

Lemma 3 (Applicative dispatch compatibility). If · ⊢ v : A and ⌊v1⌋<: ⌊v⌋λ then · ⊢ v :
⌊v1⌋→⊤

Lemma 4 (Applicative dispatch progress). If · ⊢ v1,,v2 : A → B and · ⊢ v : A then ∃e′

(v1,,v2)▷ v −→ e′.

3.5 Type Soundness of λm

The standard properties of type preservation and progress hold in λm. Type preservation
(Theorem 5) states that the types are preserved during reduction. Progress (Theorem 6)
states that a well-typed expression is either a value or it reduces. Note that the operational
semantics is type dependent i.e. operational semantics depends upon the casting relation.
Therefore, type preservation depends upon type casting preservation (Theorem 1), and
progress depends on type casting progress (Theorem 2).



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Journal of Functional Programming 11

Theorem 5 (Type Preservation). If · ⊢ e : A and e −→ e′ then · ⊢ e′ : A.

Theorem 6 (Progress). If · ⊢ e : A then either e is a value; or e −→ e′ for some e′.

4 Relating λm and Dunfield’s Calculus

This section presents several results relating λm’s type system and semantics to those in
the variant of Dunfield’s calculus presented in Section 2. An important remark is that λm’s
dynamic semantics cannot be complete with respect Dunfield’s small-step semantics. The
semantics of her calculus allows ill-typed reductions, while λm’s semantics does not.

4.1 Soundness and Completeness with Respect to Dunfield’s Type System

The type system of λm is sound and complete with respect to Dunfield’s type system, mean-
ing that all the programs that type-check in Dunfield’s type system, can also be encoded
via an elaboration in λm.

Elaboration to λm. The gray parts of the rules in Figure 2 show the elaborated terms in
λm. Most parts of the elaboration are straightforward, simply elaborating an expression
in Dunfield’s calculus to the same kind of expression in λm. Rule DTYP-ABS elaborates
an unannotated lambda expression from Dunfield’s calculus to a type annotated lambda
expression in λm. Rule DTYP-AND is also interesting. It elaborates an expression that
checks against an intersection of two types into a merge of the two elaborated expressions.
The case of unannotated lambda expressions is of particular interest in combination with
rule DTYP-AND. Dunfield’s calculus has unannotated lambda expressions and the typing
rule DTYP-AND is able to encode the following program:

DTYP-AND
· ⊢ λx.x : Int→ Int · ⊢ λx.x : Bool→Bool

· ⊢ λx.x : Int→ Int∧Bool→Bool

Whereas λm cannot encode the above program directly. Therefore, we elaborate this pro-
gram into a program in λm using a merge, in order to preserve the completeness with
respect to Dunfield’s type system. The elaboration for such a program is shown next:

· ⊢ λx.x : Int→ Int∧Bool→Bool⇝ (λx.x : Int→ Int),,(λx.x : Bool→Bool)

The expression λx.x type-checks against Int→ Int∧Bool→Bool in Dunfield’s type
system and elaborates to (λx.x : Int→ Int),,(λx.x : Bool→Bool) in λm.

A note on Dunfield’s type system. Besides allowing ill-typed reductions, Dunfield’s
type system allows certain ill-typed parts of the programs. For example, the program
1,,succ true, type-checks following the rule DTYP-MERGA. Importantly, a part of this pro-
gram (succ true) is ill-typed. Such ill-typed parts of the programs have no practical purpose
and are not essential. Indeed, in her elaboration, Dunfield simply discards such untyped
expressions, which never get elaborated. Therefore, we do not account for such ill-typed



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12 Type Soundness with Unrestricted Merges

|i| = i
|x| = x

|λx.e : A → B| = λx.|e|
|e1 e2| = |e1| |e2|
|e1,,e2| = |e1|,,|e2|

|fix x.e : A| = fix x.|e|
|switch e {(x : A)→ e1, (y : B)→ e2}| = switch |e| {x → |e1|, y → |e2|}

Fig. 8. Type Erasure function.

expressions in our calculus either. We prove completeness of the type system upto the point
where all (sub)expressions of a program are well-typed.

Soundness and completeness. Lemma 7 states that if an expression e type-checks in
Dunfield’s type system with type A and elaborates to e′ in λm, then e′ has type A in λm.
Lemma 8 states that if an expression e type-checks in λm against type A, then after erasure
the expression e type checks against A in Dunfield’s system. The erasure function, which
simply drops type annotations, is presented in Figure 8.

Lemma 7 (Completeness Lemma). If Γ ⊢d e : A⇝ e′ then Γ ⊢ e′ : A.
Lemma 8 (Soundness Lemma). If Γ ⊢ e : A then Γ ⊢d |e| : A.

4.2 Soundness with Respect to Dunfield’s Semantics

The direct operational semantics of λm is sound with respect to Dunfield’s dynamic seman-
tics (Lemma 9). Dunfield’s semantics is shown in Figure 3 and the semantics for λm is
shown in Figure 6. In our soundness result we also employ the type erasure (|e|) shown in
Figure 8. The completeness to Dunfield’s dynamic semantics does not hold. Note that the
soundness holds for a multi-step relation, meaning that a single step in λm corresponds to
zero, one, or more steps in Dunfield’s calculus.

Lemma 9 (Soundness of semantics). If e −→ e′ then |e| −→∗
d |e′|.

5 Discussion and Conclusion

We propose a type-sound semantics for a variant of the calculus studied by Dunfield
(2014). Calculi with an unrestricted merge operator are important due to their general
purpose nature and ability to encode several other language constructs. The direct oper-
ational semantics adopted in this paper reduces the metatheoretical complexity compared
to the elaboration approach by Dunfield, since there is no need for a target language, and
the semantics of programs can be directly understood. We argue that, among other things,
our semantics is valuable for studying possible extensions with other features, and the
interactions of the merge operator with such extensions. Nonetheless, we view the TDOS
and elaboration approaches as complementary. Both approaches provide valuable insights



553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

Journal of Functional Programming 13

about the merge operator and they can be used for different purposes. For instance, the elab-
oration semantics suggests an easy way to obtain efficient implementations of languages
with the merge operator via an elaboration to a standard target programming language.
While the TDOS approach is implementable, its direct implementation is not efficient.

This pearl does not provide novel techniques with respect to Huang et al. (2021)’s
TDOS. However, our work is free from several artifacts imposed by Huang et al.’s
restrictions to obtain a deterministic semantics. These artifacts complicate the semantics
considerably. Huang et al. (2021)’s calculi employ type disjointness to obtain determinism.
Only merges with disjoint types are allowed, which prevent applications such as overload-
ing. Union types are also not supported. They also have to adopt bidirectional typing, as a
type assignment system would lead to other sources of non-determinism. Finally, a notion
of consistency for values is needed to prove determinism. In our work we can avoid all that
since we do not impose restrictions on merges and we do not aim to have determinism.

Closest to us is the work by Xue et al. (2022), which also considers a TDOS with unre-
stricted merges, but without union types. However, Xue et al.’s work is still focused on
algorithmic aspects and it retains several techniques from Huang et al.’s approach, includ-
ing bidirectional typing, which complicate the semantics. The absence of union types
and their elimination constructs (switches) means that the calculus lacks some expressive
power in Dunfield’s calculus. The addition of union types simplifies applicative dispatching
considerably: union types can be used to provide the input type of merged functions.

In conclusion, this work provides a simple calculus with unrestricted merges and compa-
rable expressive power to Dunfield’s original calculus. However, unlike Dunfield’s original
calculus, λm has a type-sound direct operational semantics.

References

Bi, X., Oliveira, B. C. d. S. & Schrijvers, T. (2018) The Essence of Nested Composition. European
Conference on Object-Oriented Programming (ECOOP).

Castagna, G., Ghelli, G. & Longo, G. (1995) A calculus for overloaded functions with subtyping.
Information and Computation. 117(1), 115–135.

Coppo, M., Dezani-Ciancaglini, M. & Venneri, B. (1981) Functional characters of solvable terms.
Mathematical Logic Quarterly. 27(2-6), 45–58.

Dunfield, J. (2014) Elaborating intersection and union types. Journal of Functional Programming.
24(2-3), 133–165.

Huang, X., Zhao, J. & Oliveira, B. C. d. S. (2021) Taming the merge operator. Journal of Functional
Programming. 31, e28.

Oliveira, B. C. d. S., Shi, Z. & Alpuim, J. (2016) Disjoint intersection types. Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming. pp. 364–377.

Reynolds, J. C. (1988) Preliminary design of the programming language forsythe. Technical Report
CMU-CS-88-159. Carnegie Mellon University.

Xue, X., Oliveira, B. C. d. S. & Xie, N. (2022) Applicative intersection types. Programming
Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New Zealand,
December 5, 2022, Proceedings. Springer. pp. 155–174.

Zhang, W., Sun, Y. & Oliveira, B. C. (2021) Compositional programming. ACM Transactions on
Programming Languages and Systems (TOPLAS). 43(3), 1–61.


	Introduction
	Background: Dunfield's Calculus
	A Type-Sound Calculus with a Type-Directed Operational Semantics
	Syntax and Type System
	Casting
	Operational semantics
	Applicative Dispatching
	Type Soundness of Lambda-u

	Relating Lambda-u and Dunfield's Calculus
	Soundness and Completeness with Respect to Dunfield's Type System
	Soundness with Respect to Dunfield's Semantics

	Discussion and Conclusion

